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INTRODUCTION 
  

The Kalman filter (KF) is a widely used tool of optimal state 

estimation theory (Simon, 2006).  Though initially it was 

formulated for linear problems (Kalman, 1960) later the 

algorithm was extended and applied to nonlinear problems as 

well.  The most KF applications are for the problems related to 

various dynamic systems, but some quite complicated KF 

algorithms are applied to ill-posed problems (Keppenne and 

Rienecker, 2003).  

 

Traditional methods for airborne electromagnetics (AEM) data 

processing are apparent resistivity calculation and one-

dimensional (1D) inversion, since these methods provide a 

quick representation of physical properties of the environment 

without any additional information.  Apparent resistivity is 

calculated as the resistivity of equivalent homogeneous half-

space for each channel in frequency domain (FD) or in time 

domain (TD).  Generally, the geometry of AEM system, 

including its altitude above the ground, is used in the 

calculations.  1D inversion is calculation of parameters for 

horizontally layered model in a way that the modeled response 

corresponds to the measurements of AEM system.  The 

geometry is taken into account also.  For both methods it is 

required to solve problems which are ill-posed according to 

Hadamard (1932).  Thus, a regularization is required in order 

to provide a unique and stable solution. 

 

According to Chang-Chun et al. (2015) a generally accepted 

set of methods of 1D inversion exists in the AEM.  

Guillemoteau et al. (2011) choose among them three basic 

methods: Vertically Constrained Inversion (VCI), Laterally 

Constrained Inversion (LCI), Singular Value Decomposition 

(SVD).  All these methods use different techniques to 

eliminate measurement noise, but the basis of all of them is 

minimization of the following quadratic function: 
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where N is the number of channels of the AEM system, which 

are used in the processing; Fobs are measurement results and 

Fcal are solutions of the forward problem for the model with 

parameters given by the vector m = (ρ1, h1, ρ2, h2, …), where 

ρk is the resistivity and hk is the thickness of the corresponding 

layer. 

 

According to Legault (2015) the vast majority of modern 

AEM systems use vertical magnetic dipole to transmit field 

and vertical component of the response to interpret.  

Following the trend, for given frequency ω I will calculate 

function F in formula (1) as the vertical component of the 

response (Zhdanov, 2009): 
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where J0 is zero order Bessel function of the first kind, r is the 

horizontal shift of the receiver with respect to the dipole axis, 

hT is the altitude of the dipole above ground, u is two-

dimensional spectrum of the potential of the secondary field: 
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where M is the amplitude of the dipole moment, R* is the 

reduced spectral impedance of the medium.  For K layers (the 

thickness of the bottom layer is considered to be infinite) the 

reduced spectral impedance is given as 

*R  

,
n

n
+hn+hn

n

n
+hn

K

K

KK




























































  11

1122

2

11

11 thththth  

,>n,
ρ

iω
n=n k

k

k 0Re02

0


  (4) 

μ0 = 4π·10-7 is the magnetic constant, i is the imaginary unit, 

Re nk is the real part of the complex number nk. 

 

SUMMARY 
 

Iterated extended Kalman filter is a tool in the theory of 

optimal estimation used for nonlinear problems.  It 

minimizes variance of the estimation error in terms of 

probabilistic approach.  Despite the special terminology, 

the Kalman filter algorithm minimizes the objective 

function, representing the squared difference between the 

measured vector and the calculated one for the 

parameters of selected model.  It works like the least 

squares method – a conventional method for airborne 

electromagnetic data inversion.  In this paper I describe 

the essence of the Kalman approach to solving inverse 

problems.  I show, how one-dimensional inversion with 

vertical and lateral constraints can be performed in terms 

Kalman filter.  The described algorithm takes into 

account the measurement noise, which is specified as the 

dispersion of signals in the corresponding measurement 

channels at high altitude.  Special covariance matrix 

representation allows using corresponding Kalman filter 

calculation methods.  They provide numerical stability of 

the algorithm.  The Kalman approach makes it possible to 

combine modern techniques used in airborne survey data 

processing.  I give an example of the Kalman filter use in 

the frequency-domain airborne data processing.  

 

Key words: inversion, Kalman filter, airborne 

electromagnetics, frequency domain, time domain. 
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The equations (2)-(4) are sufficient to solve the forward 

problem in 1D case and to obtain the function F for AEM FD 

systems.  The real part of (2) gives the in-phase component 

and the imaginary part gives the quadrature component of 

secondary field. 

 

To obtain the model of the TD response, it is enough to 

convolve the frequency response of the layered model SHz(ω) 

with known spectrum of the primary field ST(ω).  The 

components of the frequency response are calculated setting 

M = 1 in (3).  Taking into account that the waveform of all 

AEM TD systems is periodical and symmetrical with respect 

to zero and that the receiver frequency response SR(ω) is 

bounded at least by the Nyquist frequency, it is sufficient to 

calculate the response for finite number of odd harmonics of 

the base frequency (Volkovitsky and Karshakov, 2013): 
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where ω0 is the base frequency of the primary field, i. e. the 

minimal frequency in the waveform spectrum; ωL is the 

maximum frequency, that can be registered by the receiver, 

SR(ωk) = 0 for  k > L. 

 

Obviously, setting the number of layers K = 1 in (4) leads to 

the forward problem solution for apparent resistivity.  

According to Fraser (1987), there are several approaches used 

to calculate apparent resistivity as a function of two 

parameters of FD data.  1) In-phase and quadrature part: 

ineffective for low conductivity – there is no in-phase 

response, and for high conductivity – there is an ambiguous 

quadrature response, nonsensitive to resistivity changes.  

2) Amplitude and flight altitude: a most appropriate method, 

but it gives greater noise for low conductivity with respect to 

method 4, and greater noise for high conductivity with respect 

to method 3.  3) In-phase part and flight altitude: ineffective 

for low conductivity – there is no in-phase response.  

4) Quadrature part and flight altitude: ineffective for high 

conductivity – there is an ambiguous quadrature response.  

5) Phase and flight altitude: ineffective for low conductivity – 

phase is nonsensitive to resistivity changes.  

 

Any of these methods provides the use of 2D nomogram for 

calculating apparent resistivity, which, with the use of modern 

software packages, allows obtaining the desired values 

quickly.  Each of these approaches has its advantages and 

disadvantages, but it is worth noting the following.  First, all 

of them give different values of resistivity when the real 

medium differs from a homogeneous half-space, which makes 

it difficult to switch from one method to another.  And such a 

transition is necessary, because of the mentioned limitations.  

Second, the secondary field for a layered medium differs from 

the response for a half-space.  This leads to poor adequacy of 

real measurements and calculated in-phase and quadrature 

parts: the measured quadrature part can be reasonably greater 

than calculated one for any half-space.  

 

In this paper I suggest to use the KF for solution of the 

following two tasks: first, to combine modern techniques used 

in 1D inversion, second, to get a general algorithm for 

apparent resistivity calculation. The rest of the article is 

organized as follows.  First, the inverse problem is formulated 

as a stochastic estimation problem, it is necessary to apply the 

KF.  For the solution of this problem I give the equations of 

the iterated extended KF (IEKF) (Havlik and Straka, 2015).  

The peculiarity of the proposed approach is the way of 

calculating the covariance matrix, alternative to the methods 

described by Havlik and Straka (2015).  An emphasis is made 

on the composition of covariance matrix of estimate error.  It 

is shown, how this algorithm implements known approaches 

to 1D-inversion in case of VCI, LCI and SVD.  As an 

example, the described algorithm is applied to the data of 

AEM FD system EM4H (Vovenko et al., 2013) for apparent 

resistivity calculation.  At the last part of the article the 

conclusions are formulated. 

 

GEOPHYSICAL INVERSION AS A STOCHASTIC 

ESTIMATION PROBLEM 

 

At each moment j the measurements of a geophysical system 

can be represented as N-dimensional vector zj.  Assume that 

the model of medium at that point is described by K-

dimensional vector of parameters xj and parameters of the 

field are derived from the solution of the forward problem as 

N-dimensional vector function hj(xj): 
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where rj is a vector of measurement noise, which is modeled 

as Gaussian white noise with zero mean and covariance matrix 

Rj, E[·] denotes the mean value, δjk is the Kronecker delta: 

δjk = 1 for j = k and δjk = 0 otherwise.  

 

Also it is possible to use the model of time dependence of the 

vector xj: 

,δ=E,=E,+= jkj

T

kjjjjj+j Qqqqqxfx ][0][)(1
   (7) 

where qj is a vector of random component that is modeled as 

Gaussian white noise with zero mean and covariance matrix 

Qj.  In essence, this matrix represents correlation of medium 

parameters in neighboring points.  Note, the equation (7) can 

be considered as a spatial dependence of x, i. e. matrix Q and 

vector f can be functions of coordinate along the survey 

profile (Karshakov and Kharichkin, 2008). 

 

The estimation problem is formulated as follows.  Assume that 

the state vector x satisfies (7).  From the measurements zj, 

which satisfy (6), at the moments j it is required to find 

vectors
jx~ that have minimum deviation from the actual values 

xj at these points. 

 

Initial estimate 

0

~x of vector of parameters is needed to solve 

the problem.  This estimate does not take any measurements 

into account and reflects only a priori information about the 

medium.  For this vector covariance matrix of a priori estimate 

error is used: 
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This statement of the estimation problem lets use of the IEKF. 

 

THE ALGORITHM OF ITERATED EXTENDED 

KALMAN FILTER 
 

The solution of the estimation problem is given by a sequence 

of cycles.  Each of them consists of two steps: the correction 

step and the prognosis step.  The prognosis step is a transition 

from a posteriori estimates, marked by ‘+’, in point j – 1, to 

a priori estimates, marked by ‘–’, in point j: 
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There are several effective methods for severely nonlinear 

models (7).  They take into account nonlinearity of f by 

different ways: sigma-point algorithm, unscented filter etc. 

(Simon, 2006).  However, the deterministic part f in (7) is 

usually unknown, because our knowledge about the medium is 

minimal.  All the uncertainty is put into the random part q. So, 

in most cases the following model can be used: f(x) = x, A = I. 

 

The correction step is a transition from a priori estimate to a 

posteriori one at the moment j: 
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The function h(x) in (10) is severely nonlinear – see (2) or (5), 

for example.  That is why several iterations are needed during 

the correction step.  The upper index k in equations (10) 

designates the iteration number.  During each step the 

Jacobian matrix H and filter coefficient K should be 

recalculated.  The breaking condition for the iteration 

procedure is met when the following value achieves its 

minimum: 
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If the measurement noise is Gaussian, (11) corresponds to the 

maximum a posteriori estimate – maximum of the 

corresponding distribution function (Simon, 2006). 

 

During each iteration step the following operations should be 

made: 
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This empirical formula for the recalculation of the covariance 

matrix P, not common for the IEKF, avoids too fast reduction 

of its norm to zero, which is the result of the fact that 

nonlinearity is not taken into account in equations (10) for P. 

 

ONE DIMENSIONAL INVERSION 
 

All the formalism presented above can be applied to various 

inversion problems that are not necessarily related to AEM. 

Further I will consider the details of 1D inversion in case of 

AEM survey.  

 

First of all, let’s remember that rock’s resistivity follows a log 

normal distribution (Palacky, 1987), so I will consider x as 

logarithm of m from equation (1). 

 

In case of AEM survey matrix R can be obtained from 

calibration flight data. Such flights are performed at high 

altitudes, as a rule, at 500-700 m above the ground, so the 

response is negligible (Vovenko et al., 2013). The statistic 

characteristics of the signals completely describe the matrix R. 

The simplest way is to set it as a diagonal matrix, the diagonal 

elements are the signal dispersions for corresponding channel. 

 

As a matter of fact, the matrix Q describes possible limits of 

model parameters variation from one measurement point to 

another: its diagonal elements are the dispersions of 

increment/decrement of corresponding parameters. It is clear 

that for greater distance between measurement points the 

greater variability of the model is required. Thus, it is 

reasonable to set the variability per meter by the matrix Q1 and 

calculate matrix Qj as Qj = vj
2Q1, where vj is the magnitude of 

the current velocity of the carrier of the AEM system. And the 

model itself can be trivial fj (xj) = xj. 

 

Finally, the matrix ,

0P which characterizes the adequacy of a 

priori information about the model, should contain the 

dispersions of the errors for corresponding parameters in the 

main diagonal and their correlation coefficients outside it. 

 

Discussing the methods of 1D inversion it should be noted 

that the form (10) in general is equivalent to the traditional 

forms for SVD, VCI, LCI (Jupp and Vozoff, 1975; 

Guillemoteau et al., 2011). It is important that in case of VCI 

and LCI the thickness of each layer is fixed. 

 

According to Guillemoteau et al. (2011) VCI method suggests 

using a matrix with non-diagonal elements as a stabilizer.  In 

terms of KF it is equivalent to setting non-diagonal elements 

in matrix P–, which are correlations of resistivity of layers.  

LCI method suggests using a diagonal matrix as a stabilizer.  

In terms of KF it is equivalent to use of prognosis step, where 

the matrix Q1 represents the variability of resistivity per meter, 

as it was mentioned above.  In case of LCI it is reasonable to 

apply Kalman smoothing algorithm (Simon, 2006).  The main 

idea is to apply one KF from the beginning to the end of the 

profile under processing, another KF from the end to 

beginning, and then to combine forward and backward 

estimates according to their covariance. 

 

For KF numerical stability matrix P is usually represented by 

its Cholesky or LDL decomposition: P = SST or P = LDLT, 

where S is lower triangular matrix, or square root of P, L is 

lower unit triangular matrix, D is diagonal matrix.  Simon 

(2006) describes the KF algorithm for these forms of P.  Also 

he describes the methods of reducing the order of filter, which 

is equivalent to SVD method. 

 

APPARENT RESISTIVITY CALCULATION 
 

As an example I consider calculation of the apparent 

resistivity or resistivity of equivalent homogeneous half-space 

for FD AEM data of the system EM4H (Vovenko at al., 2103).  

In this system the vertical magnetic dipole is fixed on a 

fuselage of an aircraft, three-component receiver is towed by a 

flexible 70 meters long cable.  The system transmits an 

alternating magnetic field in four frequencies (130, 520, 2080, 

8330 Hz) and measures the in-phase and quadrature 

components of the response. Altitude of an aircraft is 

controlled by a radar altimeter.  In addition, the system 

measures the position of the receiver with respect to the 

transmitter.  As a result, the sum of receiver and transmitter 

altitudes (z + h) and horizontal shift of the receiver are 

obtained, which are required in formula (3) to calculate the 

secondary field (2).  

 

It is required to calculate the resistivity of equivalent 

homogeneous half-space for each frequency in each point 

where in-phase (real) and quadrature (imaginary) components 

of the response are measured.  I suggest to apply IEKF having 

in-phase and quadrature components in each frequency as 

measurements, sum of receiver and transmitter altitudes 

(z + h) and horizontal shift of the receiver r as parameters in 

forward problem solution.  In this case the dimension of 

vector of parameters x is 1 and it contains the logarithm of 
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apparent resistivity only.  The vector of measurements z has 

dimension 2 and contains the in-phase and quadrature 

components of the response.   

 

Figure 1 shows the result of IEKF in comparison with the 

resistivity calculated with the nomogram method on the base 

of quadrature response and flight altitude.  It is clear, that the 

inversion with IEKF provides the solution uniqueness and the 

efficiency for different resistivity values.  And for the 

nomogram method there are serious difficulties in 2 and 8 kHz 

frequencies.  The quadrature component of the response is 

close to the maximum value and has an ambiguity and a weak 

dependence on resistivity. 

 
Figure 1.  EM4H data inversion, from up to down: IEKF 

apparent resistivity, Ohm·m; apparent resistivity for 

quadrature response and altitude nomograms, Ohm·m. 

Dashed red line corresponds to conductive nomogram for 

2 kHz and solid red line – to resistive nomogram for 2 kHz. 

 

CONCLUSIONS 
 

The inversion problem for AEM is an essential part of data 

processing.  Variety of the methods even for 1D case is 

available.  Sometimes the choice of the most appropriate 

method may be quite sophisticated.  The method described in 

this abstract considers AEM data inversion as a stochastic 

estimation problem and uses well-developed tools of 

estimation theory based on KF.  As a result, it allows 

combining the modern approaches to inversion and provide 

efficient solution for various types of medium.  The results of 

the algorithm application are shown by the example of one of 

the simplest problem – the apparent resistivity calculation for 

FD AEM system EM4H.  The algorithm automatically 

estimates the influence of each component of the measurement 

vector.  It provides smooth and unique solution for conditions, 

where traditional methods have difficulties.  Besides, the 

method takes into account the geometry of the system.  It 

allows avoiding flight restrictions: substantial variations of 

flight speed or even variations of flight altitude in a certain 

diapason do not lead to substantial distortions of obtained 

apparent resistivity. 
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