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Iterated extended Kalman filter for airborne electromagnetic data inversion

Evgeny Karshakov

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (or ICS RAS), Moscow, Russia

ABSTRACT
The iterated extended Kalman filter (IEKF) is a tool within the theory of optimal estimation used
for nonlinear problems. The IEKF minimises variance in the estimation error in terms of a prob-
abilistic approach. Despite the special terminology, the Kalman filter algorithm minimises the
objective function, representing the normalised squared difference between the measured and
calculated vectors for theparameters of a selectedmodel. Itworks like theweighted least squares
method – a conventional method for airborne electromagnetic data inversion. In this article,
I describe the essence of the Kalman approach to solving inverse problems. I show how one-
dimensional inversionwith lateral constraints can be performed in terms of the Kalman filter. The
described algorithm takes account of the measurement noise, which is specified as the disper-
sionof signals in the correspondingmeasurement channels at highaltitude. A specific covariance
matrix representation allows use of the corresponding Kalman filter calculation methods. They
provide numerical stability of the algorithm. The Kalman approachmakes it possible to combine
modern techniques used in airborne survey data processing. Some examples of Kalman filter use
in frequency-domain airborne data processing are given.
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Introduction

The Kalman filter (KF) is a widely used tool in opti-
mal state estimation theory (Simon 2006). Although
initially formulated for linear problems (Kalman 1960),
the algorithm was later extended and applied to non-
linear problems as well. Most KF applications are for
problems related to various dynamic systems, but some
quite complicatedKF algorithmsare applied to ill-posed
problems (Keppenne and Rienecker 2003).

Conventional methods for airborne electromagnet-
ics (AEM) data processing are apparent resistivity cal-
culation and one-dimensional (1D) inversion, because
they provide quick representation of the physical prop-
erties of an environment without the need for addi-
tional information. Apparent resistivity is calculated as
the resistivity of anequivalent homogeneoushalf-space
for each channel in a frequency domain (FD) or time
domain (TD). Generally, the geometry of the AEM sys-
tem, including its altitude, is used in the calculations. 1D
inversion calculates parameters for a horizontally lay-
ered model in such a way that the modelled response
corresponds to the measurements of the AEM system;
the geometry is also taken into account. For bothmeth-
ods, it is necessary to solve problems that are ill-posed
according to Hadamard (1932). Thus, regularisation is
required to provide a unique and stable solution.

According to Chang-Chun et al. (2015), a generally
accepted set of 1D inversion methods exists in AEM.
Three basicmethods are given in Guillemoteau, Sailhac,

and Béhaegel (2011): vertically constrained inversion
(VCI), laterally constrained inversion (LCI) and singular
value decomposition (SVD). The LCI method described
in Guillemoteau, Sailhac, and Béhaegel (2011) uses a
reference model provided by previous soundings. All
these methods use different techniques to eliminate
measurement noise, but the basis of all is minimisation
of the following quadratic function:

Q =
N∑
j=1

[Fobsj − Fcalj (m)]
2
, (1)

where N is the number of channels in the AEM system,
which are used in the processing; Fobs is the measure-
ment results and Fcal is the solution to the forward
problem for the model, with parameters given by vec-
torm = (ρ1, h1, ρ2, h2, . . . ), where ρk is the resistivity
and hk is the thickness of the corresponding layer.

According to Legault (2015), the vast majority of
modern AEM systems use the vertical magnetic dipole
to transmit the field and the vertical component of the
response to interpret. Following a trend for the given
frequencyω, I calculate function F in Equation (1) as the
vertical component of the response (Zhdanov 2009):

Hz(ω) = − 1
2π

∫ ∞

0
u(n0, z, hT ,ω)J0(n0r)n

2
0dn0, (2)

where J0 is the zero-order Bessel function of the first
kind, r is the horizontal shift of the receiver with respect
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2 E. KARSHAKOV

to the dipole axis, hT is the altitude of the dipole above
the ground, z is the altitude of the receiver and u is
two-dimensional (2D) spectrum of the potential of the
secondary field:

u(n0, z, hT ,ω) = M · exp(−n0(z + h))

2
· n1 − n0R∗

n1 + n0R∗ ,
(3)

whereM is the amplitude of the dipole moment and R*
is the reduced spectral impedance of the medium. For
K layers (the thickness of the bottom layer is considered
infinite), the reduced spectral impedance is given as

R∗ = tanh
{
n1h1 + tanh−1

[
n1
n2

tanh
(
n2h2

+ · · ·
(
nK−1hK−1 + tanh−1 nK−1

nK

)
· · ·

)]}
,

nk =
√
n20 − iωμ0

ρk
, Re nk > 0, (4)

μ0 = 4π ·10−7 H/m is the magnetic constant, i is the
imaginary unit, Re nk is the real part of the complex
number nk .

Equations (2)–(4) are sufficient to solve the forward
problem in the 1D case and to obtain the function F for
AEM FD systems. The real part of Equation (2) gives the
in-phase component and the imaginary part gives the
quadrature component of the secondary field.

To obtain amodel of the TD response, it is enough to
convolve the frequency response of the layered model
SHz(ω) with the known spectrum of the primary field
ST(ω). The components of the frequency response are
calculated by using M = 1 in Equation (3). Taking into
account that the waveform of all AEM TD systems is
periodical and symmetrical, and that the receiver fre-
quency response SR(ω) is bound by the Nyquist fre-
quency at least, it is sufficient to calculate the response
for a finite number of odd harmonics of the base fre-
quency (Volkovitsky and Karshakov 2013):

Hz(t) = 1
2π

Re
L∑

k=0

SHz(ωk) · ST(ωk) · SR(ωk)

· exp(−iωkt), ωk = (2k + 1)ω0, (5)

where ω0 is the base frequency of the primary field, i.e.
the minimal frequency in the waveform spectrum; ωL is
the maximum frequency, that can be registered by the
receiver, SR(ωk) = 0 for k > L.

Obviously, setting the number of layers K = 1 in
Equation (4) leads to the forward problem solution for
apparent resistivity. According to Fraser (1987), several
approaches are used to calculate apparent resistivity as
a function of two parameters of FD data.

(1) In-phase and quadrature part (IQ): ineffective for
high resistivity – there is no in-phase response,
and for low resistivity – there is an ambiguous
quadrature response, not sensitive to resistivity
changes.

(2) Amplitude and flight altitude (AA): most appropri-
ate method, but gives greater noise for high resis-
tivity with respect to method 4, and greater noise
for low resistivity with respect to method 3.

(3) In-phase part and flight altitude (IA): ineffective for
high resistivity – there is no in-phase response.

(4) Quadrature part and flight altitude (QA): ineffective
for low resistivity – there is an ambiguous quadra-
ture response.

(5) Phase and flight altitude (PA): ineffective for high
resistivity – phase is not sensitive to resistivity
changes.

Each of these methods provides the use of a 2D
nomogram for calculating apparent resistivity, which,
with the use of modern software packages, enables the
desired values to be obtained quickly. Each of these
approaches has its advantages and disadvantages, but
it is worth noting the following. First, all give different
values for resistivity when the real medium differs from
a homogeneous half-space, which makes it difficult to
switch fromonemethod to another. Butwemust switch
if we want to get the best result for the whole range of
resistivity. For example, it is better to switch from AA
to QA in case of high resistivity to decrease the noise
level. Second, the secondary field for a layered medium
differs from the response for a half-space. This leads to
poor adequacy of real measurements and calculated in-
phase and quadrature parts: the measured quadrature
part can be reasonably greater than calculated one for
any half-space.

In this article, I suggest using the KF for the follow-
ing two tasks: first, to combinemodern techniques used
in 1D inversion; and second, to get a general algorithm
for apparent resistivity calculation. The remainder of the
article is organised as follows. First, the inverse prob-
lem is formulated as a stochastic estimation problem,
and it is necessary to apply the KF. For the solution
to this problem, I give the equations of the iterated
extended KF (IEKF) (Havlik and Straka 2015). The pecu-
liarity of the proposed approach lies in the way of cal-
culating the covariance matrix, an alternative to the
methods described byHavlik and Straka (2015). Empha-
sis is placed on the composition of the estimation-
error covariance matrix. How this algorithm imple-
ments known approaches is shown: VCI, LCI and SVD.
As an example, the described algorithm is applied to
data from an AEM FD system, EM4H (Vovenko et al.
2013), for apparent resistivity calculation and for 1D
inversion. The last part of the article formulates the
conclusions.
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Geophysical inversion as a stochastic
estimation problem

At each moment j, the measurements of a geophysical
system can be represented as aN-dimensional vector zj.
Assume that the model of the medium at that point is
described by a K-dimensional vector of parameters xj
and the parameters of the field are derived from solu-
tion of the forward problem as anN-dimensional vector
function hj(xj):

zj = hj(xj) + rj, E[rj] = 0, E[rjrTk ] = Rjδjk , (6)

where rj is a vector of measurement noise, which is
modelled as a Gaussianwhite noisewith zeromean and
covariance matrix Rj, E[·] denotes the mean value and
δjk is the Kronecker delta: δjk = 1 for j = k and δjk = 0
otherwise.

Also, it is possible to use the time dependencemodel
of the vector xj:

xj+1 = fj(xj) + qj, E[qj] = 0, E[qjq
T
k ] = Qjδjk , (7)

where qj is a vector of random component that is
modelled as Gaussian white noise with zero mean
and covariance matrix Qj. In essence this matrix repre-
sents correlation of medium parameters in neighbour-
ing points. Note, Equation (7) can be considered as a
spatial dependence of x, i.e. matrix Q and vector f can
be functions of a coordinate along the survey profile
(Karshakov and Kharichkin 2008).

The estimation problem is formulated as follows.
Assume that the state vector x satisfies Equation (7).
From the measurements zj, which satisfy Equation (6),
at moments j it is necessary to find vectors x̃j that have
minimumdeviation from the actual values of xj at these
points.

Initial estimate x̃−
0 of vector of parameters is needed

to solve the problem. This estimate does not take any
measurements into account and reflects only a priori
information about themedium. For this vector, a covari-
ance matrix of the a priori estimate error is used:

x̃−
0 = E[x̃0], P−

0 = E[(x0 − x̃−
0 )(x0 − x̃−

0 )
T
]. (8)

This statement of the estimation problem allows us to
use the IEKF.

The algorithm of iterated extended Kalman
filter

The solution to the estimation problem is given by a
sequence of cycles. Each consists of two steps: correc-
tion and prognosis. The prognosis step is a transition
from a posteriori estimates, marked by “+”, in point j –
1, to a priori estimates, marked by “–”, in point j:

x̃−
j = fj−1(x̃

+
j−1),

P−
j = Aj−1P

+
j−1A

T
j−1 + Qj−1, Aj−1 = ∂fj−1

∂x
. (9)

There are several effective methods for severely non-
linear models (Equation 7). They take into account
the nonlinearity of f in different ways, i.e. sigma-point
algorithm, unscented filter, etc. (Simon 2006). How-
ever, the deterministic part f in Equation (7) is usually
unknown because our knowledge about themedium is
minimal. All the uncertainty is put into the random part
q. So, in most cases, the following simple model can be
used in Equation (9): f(x) = x, A = I.

The correction step is a transition from an a priori
estimate to an a posteriori estimate at moment j:

x̃k+j = x̃k−j + Kk
j (zj − hj(x̃

k−
j )),Pk+j = (I − Kk

j H
k
j )P

k−
j ,

Kk
j = Pk−j HkT

j [Hk
j P

k−
j HkT

j + Rj]
−1

, Hk
j = ∂hj(x̃

k−
j )

∂x .
(10)

Function h(x) in Equation (10) is severely nonlinear, see
Equations (2) and (5). That is why several iterations are
needed during the correction step. The upper index k in
Equation (10) designates the iteration number. During
each step, the Jacobian matrix H and filter coefficient
K should be recalculated. The breaking condition for
the iteration procedure ismetwhen the following value
reaches its minimum:

||zj − hj(x̃
k+
j )|| =

√
(zj − hj(x̃

k+
j ))

T
R−1(zj − hj(x̃

k+
j )).

(11)
If the measurement noise is Gaussian, the minimum

of Equation (11) corresponds to the maximum likeli-
hood estimation – maximum of the corresponding dis-
tribution function (Simon 2006).

During each iteration step, the following operations
should be made:

x̃k−j = x̃k−1+
j , Pk−j = ||zj − hj(x̃

k−1+
j )||2

||(zj − hj(x̃
k−1−
j ))||2

Pk−1−
j .

(12)
This empirical formula for recalculation of the covari-
ance matrix P, not common for the IEKF, avoids too
rapid a reductionof its norm, becausenonlinearity is not
taken into account in Equation (10) for P.

One-dimensional inversion

All the formalism presented above can be applied to
various inversion problems that are not necessarily
related to AEM. Further, I consider the details of 1D
inversion in case of an AEM survey.

First, let us remember that the resistivity of rock fol-
lows a log normal distribution (Palacky 1987), so I con-
sider x as a logarithm ofm from Equation (1).

In the case of the AEM survey, matrix R can be
obtained from calibration flight data. Such flights are
performed at high altitude, as a rule 500–700 m
above the ground, so the secondary field is negligible
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(Vovenko et al. 2013). The statistical characteristic of the
signals describesmatrixR completely. The simplest way
is to set it as a diagonal matrix in which the diagonal
elements are the signal dispersions for the correspond-
ing channel.

As a matter of fact, matrix Q describes the possible
limits of the variation in model parameters from one
measurement point to another: its diagonal elements
are the dispersions of increment/decrement of the cor-
responding parameters. Greater variability of themodel
is required for a greater distance between measure-
ment points. Thus, it is reasonable to set the variability
per metre using matrix Q1 and calculate matrix Qj as
Qj = vj2Q1, where vj is the current velocity of the car-
rier of the AEM system. In this case, themodel itself may
be trivial fj(xj) = xj.

Finally, matrix P−
0 , which characterises the adequacy

of a priori information about the model, should con-
tain the dispersions of the errors for the corresponding
parameters in the main diagonal and their correlation
coefficients outside it.

When discussing the methods of 1D inversion, it
should be noted that Equation (10) is equivalent to
the traditional forms for SVD, VCI and LCI (Jupp and
Vozoff 1975; Guillemoteau, Sailhac, andBéhaegel 2011).
The equivalence follows from the matrix inversion
lemma (Simon 2006). It is important to mention that
in case of VCI and LCI, the thickness of each layer is
fixed.

According to Guillemoteau, Sailhac, and Béhaegel
(2011), the VCI method suggests using a matrix with
non-diagonal elements as a stabiliser. In terms of the
KF, it is equivalent to setting non-diagonal elements in
matrixP−, which are correlations of the resistivity of lay-
ers. The LCI method suggests using a diagonal matrix
as a stabiliser. In terms of the KF, it is equivalent to
using the prognosis step, where matrix Q1 represents
the variability in resistivity per metre, as mentioned
above. In case of the LCI, it is reasonable to apply the
Kalman smoothing algorithm (Simon 2006). The main
idea is to apply one KF from the beginning to the end
of the profile being processed, another KF from the
end to the beginning, and then to combine forward
and backward estimates according to their covariance
matrixes.

For numerical stability of KF,matrixP is usually repre-
sented by its Cholesky or LDL decomposition: P = SST

or P = LDLT , where S is lower triangular matrix or
square root of P, L is lower unit triangular matrix and
D is diagonal matrix. Simon (2006) describes the KF
algorithm for these forms of P. He also describes meth-
ods of reducing the order of the filter, which is equiva-
lent to the SVDmethod.

Note, we can evaluate the estimation quality if we
have the estimation error covariances. For example, we
can use the so-called stochastic estimability measure
(GolovanandParusnikov1998),which canbe calculated

as follows:

μj(c) = 1 −
√√√√cTP+

j c

cTP−
j c

, (13)

where vector c defines the value of interest, e.g. c = (1,
0, . . . , 0)T gives the estimability measure of xj1, and
c = (0, 1, 1, 0, . . . , 0)T shows the estimation quality
of xj2 + xj3. Roughly speaking, the stochastic estima-
bility measure shows how the current set of measure-
ments improves estimation of the parameter cTx. From
Equation (13) it follows that the better estimation, the
closer μj is to 1, and small values of μj mean poor
observability of the parameter related to c.

Frequency domain data processing

To illustrate this method, I consider calculation of the
apparent resistivity, or resistivity of equivalent homoge-
neous half-space, and 1D inversion for FD AEM data of
the systemEM4H (Vovenkoet al. 2013). Its application to
TD data inversion is presented by Karshakov and Moila-
nen (2018). EM4H has a vertical magnetic dipole fixed
to the fuselage of an aircraft and a three-component
receiver towed by a flexible 70-m cable. The system
transmits an alternating magnetic field at four frequen-
cies (130, 520, 2080 and 8330Hz) and measures the
in-phase and quadrature components of the response
(Figure 1). The altitude of the aircraft is controlled by
a radar altimeter. In addition, the system measures the
position of the receiver with respect to the transmitter.
As a result, the sum of receiver and transmitter alti-
tudes (z+ h) and the horizontal shift of the receiver are
obtained,which are required in Equation (3) to calculate
the secondary field (Equation 2).

It is necessary to calculate the resistivity of the equiv-
alent homogeneous half-space for each frequency at
each point where in-phase (real) and quadrature (imag-
inary) components of the response aremeasured. I sug-
gest applying IEKF with in-phase and quadrature com-
ponents in each frequency as measurements, the sum
of receiver and transmitter altitudes (z+ h), and the hor-
izontal shift of receiver r as parameters in the forward
problem solution. In this case, the dimension of the vec-
tor of parameters x is 1 and it contains the logarithm of
apparent resistivity only. The vector of measurements z
has dimension 2 and contains the in-phase and quadra-
ture components of the response.

Figure 2 shows the result of IEKF in comparison with
resistivity calculated using the nomogram method on
the base of quadrature response and flight altitude (QA-
nomogram). It is clear that the inversion with the IEKF
provides solution uniqueness and efficiency for differ-
ent resistivity values. For the nomogrammethod, there
are serious difficulties at frequencies of 2 and 8 kHz.
The quadrature component of the response is close to
the maximum value and has an ambiguity and weak
dependence on resistivity.
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Figure 1. In-phase (upper) and quadrature (lower) measurements at four frequencies of the EM4H system.

Figure 2. Apparent resistivity obtained using the IEKF (upper) and QA-nomogram (lower) methods. Two nomogram solutions are
presented for 2 kHz, a hard choice between the conductive and resistive variants.

Of course, this half-space inversion experiment is
not enough. I use different information for the IEKF
approach and the “nomogram” approach. As already
mentioned, the AA algorithm is the most appropri-
ate. But there is a disadvantage: the amplitude always
includes the noise of both the in-phase and quadra-
ture components. The IEKFwill reduce theweight of the
corresponding component, if it is not sensitive to the
resistivity changes. Unfortunately, this is much harder
to illustrate. The point of Figure 2 was to show the IEKF
solution uniqueness and efficiency for different resistiv-
ity values.

For the same data set (Figure 1), I present the results
of 1D inversion. First, I present an SVD-like approach.
Let us consider the model of homogeneous half-space,
so the vector of parameters x contains the logarithm of
resistivity only, whereas the vector of measurements z
has dimension 8 and contains the in-phase and quadra-
ture components of the response at the four frequen-
cies. Figure 3 shows the inversion result together with
residuals (Equation 11) and the estimability measure
(Equation 13). Despite good estimability, the residuals
are > 3 in more than 50% of the points. Statistically,

this means that the model does not fit the measure-
ments. So, it is reasonable to consider a two-layered
model.

Figure 4 shows the inversion results for three-
dimensional (3D) state vector x (resistivity logarithm of
two layers and the upper layer thickness logarithm). The
half-space from the previous step was used as an ini-
tial estimate. The residuals now show that the model
fits perfectly – they are ∼ 1. At the same time, estima-
bility measures of all three estimated parameters are
quite sensitive to changes in the resistivity model. In
particular, themeasures decrease significantly at points
that tend to a half-space model. For example, at points
with easting coordinate 604250, 609850, 611450 and
616500, we can see local minima of estimability mea-
sures, and at the same points the residual for the half-
space model is close to 1 (Figure 3); even the apparent
resistivities are close to eachother (Figure 2). Thismakes
it hard to detect a resistivity boundary at these points.

Although the measurement vector dimension is
much greater than the dimension of parameters vector:
dim z = 8, dim x = 3, we can conclude, that a three-
layered model will be overcomplicated. Moreover, the
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Figure 3. SVD-like 1D inversion for the half-spacemodel (bottom), residuals (centre) and stochastic esimabilitymeasure (lower). ρ1,
resistivity of the half-space.

Figure 4. SVD-like 1D inversion for the two-layeredmodel (bottom), residuals (centre) and stochastic estimabilitymeasures for three
parameters (lower). ρ1, resistivity of the upper layer; ρ2, resistivity of the bottom layer; h1, thickness of the upper layer.
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Figure 5. LCI-like 1D inversion for the two-layered model (lower) and residuals (upper).

two-layered model allows the noises to affect the solu-
tion; and so gives us a reason to apply smoothing.

To obtain an LCI-like solution I use a prognosis
step (Equation 9) of IEKF with trivial deterministic part
(f(x) = x). Matrix Q has a diagonal form: diag{0.005,
0.005, 0.005}. This means that each parameter from
one point to another changes by ∼ 0.5%. The result
is shown in Figure 5. Here, we get a less-noisy solution
having almost the same residuals.

Conclusions

The inversion problem for AEM is an essential part
of data processing. A variety of methods is avail-
able, even for a 1D case. Sometimes choice of the
most appropriate method may be quite sophisticated.
The method described in this article considers AEM
data inversion as a stochastic estimation problem and
uses well-developed tools of estimation theory based
on the Kalman filter. As a result, it allows combina-
tion of the modern approaches to inversion and pro-
vides an efficient solution for various types of envi-
ronment. The results of the algorithm application are
shown using several examples – the apparent resis-
tivity calculation and 1D inversion for FD AEM system
EM4H.

The algorithm automatically estimates the influence
of each component of the measurement vector. It pro-
vides a smooth and unique solution for conditions
where traditional methods have difficulties. In addi-
tion, the method takes into account the geometry of
the system. It allows flight restrictions to be avoided:
substantial variations in flight speed or even varia-
tions in flight altitude in a certain diapason do not
lead to substantial distortions in the obtained apparent
resistivity.

It is worth noting that the described algorithm con-
verges rapidly. In the considered examples, the solution
was achieved in one or two iterations in each case.
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